DEFROSTING "A LA CARTE" BY LUTETIA

MASSAGERS / TUMBLERS

Name		Туре									
		0	1	2	3	4	40	400	5	6	7
Frozen meat capacity	(kg) (<i>lb</i>)	60 125	220 500	450 1.000	750 1.450	1.000 2.200	1.200 2.650	1.500 3.300	2.200 4.900	3.300 7.300	3.800 <i>8.400</i>
Floor area	(m²) (<i>ft²</i>)	1,34 14,4	2,69 28,9	3,41 36,7	4,19 <i>45,1</i>	4,85 52,2	6,00 64,6	7,10 76,4	8,13 87,5	10,39 <i>111,9</i>	10,65 <i>114,6</i>
Power excluding generator	(kW)	1,6	3,5	3,5	5,9	5,9	7,0	7,0	7,0	10,2	10,2
Indicative daily flow											
8 cycles of 2 hours	(kg)	480	1 760	3 600	6 000	8 000	9 600	12 000	17 600	26 400	30 400
(small IQF products)	(<i>Ib</i>)	1 050	3 900	7 900	13 200	17 600	21 200	26 500	38 800	58 200	67 000
4 cycles of 4 hours	(kg)	240	880	1 800	3 000	4 000	4 800	6 000	8 800	13 200	15 200
(large IQF products)	(<i>Ib</i>)	550	1 900	4 000	6 600	8 800	10 600	13 200	19 400	29 100	33 500
4 cycles of 5 hours	(kg)	240	880	1 800	3 000	4 000	4 800	6 000	8 800	13 200	15 200
(small blocks)	(<i>Ib</i>)	550	1 900	4 000	6 600	8 800	10 600	13 200	19 400	29 100	33 500
1 cycle of 12 hours	(kg)	60	220	450	750	1 000	1 200	1 500	2 200	3 300	3 800
(large blocks)	(<i>Ib</i>)	150	500	1 000	1 700	2 200	2 600	3 300	4 900	7 300	8 400

LUTETIA **TECHNOLOGIES & SOLUTIONS**

DEFROSTING **CHALLENGES, TECHNOLOGIES AND SOLUTIONS**

CHAMBERS

Name		Number of trolleys															
		Single chambers							Double chambers								
			1	2	3	4	5	6	7	8	10	1+1	2+2	3+3	4+4	5+5	
H A IQF	Small	(kg)	75	150	225	300	375	450	525	600	750	150	300	450	600	750	
		(<i>lb</i>)	165	331	496	661	827	992	1 157	1 323	1 653	331	661	992	1 323	1 653	
eat kg)	AD A	Large	(kg)	250	500	750	1 000	1 250	1 500	1 750	2 000	2 500	500	1 000	1 500	2 000	2 500
ity		Large	(<i>lb</i>)	551	1 102	1 653	2 205	2 756	3 307	3 858	4 409	5 512	1 102	2 205	3 307	4 409	5 512
pac	Dac	Small	(kg)	300	600	900	1 200	1 500	1 800	2 100	2 400	3 000	600	1 200	1 800	2 400	3 000
Fre	Blocks	oman	(<i>lb</i>)	661	1 323	1 984	2 646	3 307	3 968	4 630	5 291	6 614	1 323	2 646	3 968	5 291	6 6 1 4
	DIOCKS	Large	(kg)	500	1 000	1 500	2 000	2 500	3 000	3 500	4 000	5 000	1 000	2 000	3 000	4 000	5 000
		Large	(<i>lb</i>)	1 102	2 205	3 307	4 409	5 512	6 614	7 716	8 818	11 023	2 205	4 409	6 614	8 818	11 023
Floor a	Floor area		(m²)	2,04	3,69	5,34	6,99	8,64	10,29	11,94	13,59	16,89	4,08	7,38	10,68	13,98	17,28
		(ft²)	22,0	39,7	57,5	75,2	93,0	110,8	128,5	146,3	181,8	43,9	79,4	115,0	150,5	186,0	
Electrical power excl. heat (k		(kW)	4	7	10	13	16	19	22	25	31	7	13	19	25	31	
Steam heat power		(kg/h)	15	25	30	40	50	60	80	90	100	25	40	60	80	100	
		(<i>lb/h</i>)	33	55	66	88	110	132	176	198	220	55	88	132	176	220	
Indicati	ve daily flo	w															
8 cycles	s of 2 hour	s	(kg)	600	1 200	1 800	2 400	3 000	3 600	4 200	4 800	6 000	1 200	2 400	3 600	4 800	6 000
(small I	QF produc	:ts)	(<i>Ib</i>)	1 300	2 600	4 000	5 300	6 600	7 900	9 300	10 600	13 200	2 600	5 300	7 900	10 600	13 200
4 cycle	s of 5 hou	'S	(kg)	300	600	900	1 200	1 500	1 800	2 100	2 400	3 000	600	1 200	1 800	2 400	3 000
(large IQF products))		(<i>Ib</i>)	650	1 300	2 000	2 600	3 300	4 000	4 600	5 300	6 600	1 300	2 600	4 000	5 300	6 600	
3 cycles of 6 hours		(kg)	225	450	675	900	1 125	1 350	1 575	1 800	2 250	450	900	1 350	1 800	2 250	
(small blocks)		(Ib)	500	1 000	1 500	2 000	2 500	3 000	3 500	4 000	5 000	1 000	2 000	3 000	4 000	5 000	
1 cycle of 14 hours		(kg)	75	150	225	300	375	450	525	600	750	150	300	450	600	750	
(large blocks)		(<i>lb</i>)	150	350	500	650	850	1 000	1 200	1 300	1 700	350	650	1 000	1 300	1 700	

Whatever your requirements, we have the defrosting system suited to your production

LUTETIA SAS Tél. +33 (0)344 607 000 www.lutetia.fr Z.A. du Pré de la Dame Jeanne Fax. +33 (0)344 607 001 info@lutetia.fr 60 128 Plailly- FRANCE

is not binding and LUTETIA reserves the right to carry ou

PRECISION, PERFORMANCE & PROFIT

THE CHALLENGES OF DEFROSTING

MACRO-ECONOMIC CHALLENGES

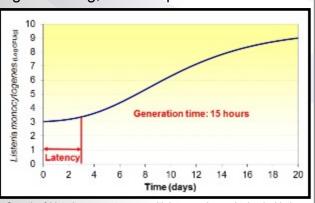
According to the "World frozen food market. Opportunities and forecasts, 2014-2020" report by the Research & Markets Institute, frozen food will represent a 306-billion-dollar market in 2020, progressing by 4.1 % over 5 years. Moreover, in response to the growing demand for rapid defrosting giving total control over the quality and the safety of foods, LUTETIA has developed various patented accelerated defrosting procedures to address the growth in use of frozen raw materials.

MICRO-ECONOMIC CHALLENGES

- Industrial productivity
 - Yield,
 - Speed,
 - Reduced footprint,
 - Maximum versatility
- ⇒ Reduced costs
 - Energy consumption
 - Water consumption

A defrosting system should be fast, productive and versatile

ENVIRONMENTAL CHALLENGES


- Reduced environmental impact
 - Energy consumption
 - Water consumption

A defrosting system should be understated and clean

FOOD SAFETY CHALLENGES

In Europe, Regulation (CE) n° 852/2004 of 29 April 2004 and in France, the Order of 21 December 2009 no longer impose any particular defrosting technique but requires the implementation of a hazard analysis. Freezing does not kill bacteria. It simply stops their development. During defrosting, bacteria pass from their

latency phase during which their metabolism recovers. At the end of this latency phase, bacteria development recommences. Therefore, at 4 °C under aerobic conditions, the latency phase of *Listeria monocytogenes* lasts around 3 days, knowing that Greer and Murray (1991) have shown that the latency phase of *Listeria monocytogenes* is even shorter in the case of defrosting.

Growth of *Listeria monocytogenes* with latency phase obtained with the *Pathogen Modeling Program*, according to the model by Buchanan *et al.* (1989) and Buchanan and Philips (1990). Conditions: $T = 4^{\circ}C_{-}$ pH = 6 – Aerobic conditions – [NaCil = 5 g/kg –

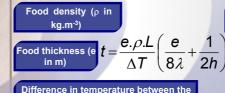
Conditions: T = 4°C - pH = 6 - Aerobic conditions - [NaCl] = 5 g/kg [NaNO₂] = 0 mg/kg - Initial load: 3 CFU/mL

Defrosting should be fast in order to avoid pathogens leaving the latency phase.

۲

F

Ø


QUAL

During freezing, ice crystals fo ⇒Losses during defrosting • Water (loss of water ho Too slow ⇔ re Too fast ⇒ The n • Molecules of technolog - Sarcoplasmic prot - Heme iron - Enzymes (colour s - Pro-oxidant molec ⇒Increased diffusion coeffic

⇒Poorly managed defree cal and nutritional quality

Planck's Law - Estimating d

frozen food and the ambiance(Δ T in °C)

Reduction in thickness

Working as hot as possib • Food safety constraint

- Quality constraints (e.
- ()) Optimise heat transfer
- Double- jacket (cond
 - Cooling fluid(s) (conv

Steam injection under re without cooking the surface taining latent condensatio

Ideas? Projects?

Come and test the

Convective transfer coefficient								
Coolant fluid	h (W.m ⁻² .K ⁻¹)							
Air in natural convection	5 à 25							
Air in forced convection	20 à 300							
Water in forced convection	300 à 6 000							
Boiling water	3 000 à 60 000							
Water steam in condensation	6 000 à 120 000							

Heat conductivity Product λ (W.m⁻¹.K⁻¹) Air at 20 °C / saturated steam 0.0256 / 0.0373 Water at 20 / 0 °C 0,599 / 0,553 Ice at -20 °C / 0 °C 2,43 / 2,22 15 Stainless steel Animal fat at 25 °C 0,152 à 0,190 Fish at 4°C 0,502 à 0,577 Meat at 4 °C 0,412 à 0,523

Pressure (mbar)	Condensation tem- perature of steam (°C)	Steam latent heat of con- densation (J.kg ⁻¹)
5	-2,4	2 835 000
10	7,0	2 485 000
25	20,8	2 452 000
50	32,9	2 424 000
100	45,8	2 393 000
164	55,0	2 371 000
200	60,1	2 358 000
300	69,1	2 336 000
400	75,9	2 319 000
500	81,3	2 305 000
1000	99,6	2 258 000

Buchanan, R.L., Stahl, H.G. et Whiting,R.C. (1989). Effects and interactions of temperature, pH, atmosphere, sodium chloride, and sodium nitrite on the growth of *Listeria monocytogenes. Journal of Food Protection*, **52** (12), 844-851.

Buchanan, R.L. et Phillips, J.G. (1990). Response surface model for predicting the effects of temperature, pH, sodium chloride content, sodium nitrite concentration, and atmosphere on the growth of *Listeria* monocytogenes. Journal of Food Protection, **53** (5), 370-376.

Greer, G.G. et Murray, A.C. (1991). Freezing effects on quality, bacteriology and retail-case life of pork. *Journal of Food Science*, **56** (4), 891–894.

TY CHALLENGE	S								
orm in the membrane	es.								
olding capacity) crystallization phenomena matrix cannot reabsorb all of the exudate gical or nutritional interest teins and amino acids									
stability) and metmyoglobin cules cient of ingredients (e.g. salt)									
osting reduces e ties	efficiency and technologi								
CAL BASES FOR									
lefrosting time (t in	s)								
Latent heat of water fusion (L = 330 000 J.kg ⁻¹)	Energy approach to defrosting								
Convective transfer coefficient (h in W.m ⁻² .K ⁻¹) Heat conductivity of the food (λ in W.m ⁻¹ .K ⁻¹)	Energy (J) = m.Cp.∆T + L.m Heat: Sensible Latent Requirement 15 % 85 %								
of products	90								
ble	© au 1 000 mbar 100 °C 100 °C 164 mbar 55 °C								
its	5 co								
.g. melting fat)	5								
luction transfers) vection transfers)	25 mbar 10 21 °C 2 100 200 200 200 000 000 000 000 000 00								
	or low temperature condensing 5 °C for meat) and whilst main- e product.								
celerated with th	ne help of the above								
DEFROSTING T	ESTS								
	\bigcirc								
em in our technolog	jical applications laboratory								

STEAM-VACUUM DYNAMIC DEFROSTING

LUTETIA PATENTS n° 92/07091 AND 15/51805

TECHNICAL PRINCIPLE

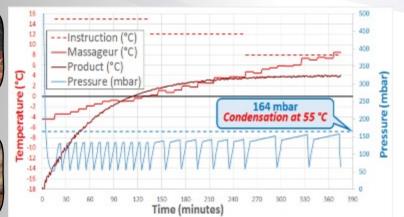

Steam-vacuum dynamic DEFROSTING LUTETIA The gradual injection of regulated steam under vacuum enables the transfer of latent heat from change of phase of steam to the product in a regular and controlled manner, without cooking the surface. Frozen

blocks are gradually separated and uniform temperatures are achieved via rotation. Defrosting may be followed by salting and a range of other operations (tenderising, smoking, cooking, cooling, PROactivation, etc.) in a single operation.

- With a double-jacket, the temperature is managed throughout the process and the addition of steam can be reduced.
- The block breaker enables the reduction of the blocks using hydraulic pressure (accelerated defrosting and improved 🔝 quality).

General duration of defrosting

- *IQF*: 1 to 4 hours
- Blocks: 5 to 12 hours (-30 % with block breaker)


Pay-back example

	Weight	Methods			
A manufacturer defrosts 4		Cold room	Massager		
tonnes of 15 kg chicken	Frozen	2 255	2 000		
fillet blocks daily. In classic	Defrosted	2 120	2 120		

air defrosting, defrosting yield is around 94%. A LUTETIA T5 defrosting massager can process 2 000 kg per 10hour cycle. Defrosting yield is around 106%.

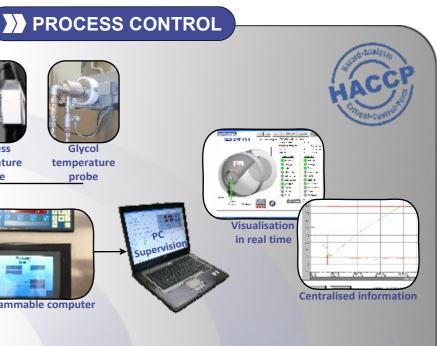
Materials saving:255 kg per cycle for 400 cycles/year 102 000 kg/year

⇒Equipment is paid for itself within 5 months

temperature

probe

- Cost-effective, improved yield (weight gain of 4 to 8 %) by reabsorption of condensates (steam, proteins, etc.), Low water use, consumption below 8 % of the weight procwe seed and most often reabsorbed. Fast, defrosting times reduced from 24/48 hours to 4/8 hours, 3:
 - gressive tilting,
- Conceived for you as perfectly adapted to your factory, the system being modular and adaptable to your constraints and configuration,
- Versatile, for any product, with cumulative operations (salting, tenderis-ing, cooking, smoking, PPO activation, stability of the second second second second second second second second ing, cooking, smoking, PROactivation, etc.) in the same massager,
- Innovative and patented, patents n° 92/07091 and 15/51805,


of cleaning, stainless steel tank,

Performance

Precision

ADVANTAGES

- Respects the integrity of fragile products, in tilted massage or pro-

- Safety and health, anaerobic conditions, short defrosting times incomand patible with the emergence of bacteria from their latency phase, ease
 - Uniform, through process control, the variety and progressively of heat provision, the mix obtained by rotation and decompacting,
 - Regular, from one cycle to another, via the management of defrosting conditions and the process control-command.

Accumulation of phases: defrosting, salting and smoking of pork bellies.

FAST DEFROSTING IN COLD CONVECTION LUTETIA PATENT n° 14/56533 🧿

LUTETIA

Fast DEFROSTING in cold convection Optimises conditions for transfer between the surface of the food and humidity in the air and balances the internal distribution of heat in the food and transfer to the interface. Therefore, surface heating

managed and freat provision is optimised for a faster defrosting and optimum food quality and safety.

- High speed air circulation, which renews the boundary layer and accelerates heat transfer,
- Regulated heat provision (air, water, steam) and cold provision (air, water),
- Static procedure which respects the most fragile foods.
- Maintenance of ambient and surface humidity by injection of steam and water spraying, which reduces drying and encourages heat transfer.

Methods

Chamber

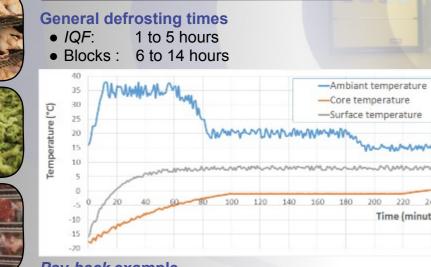
2 000

1 960

Cold room

2 085

1 960


LUTETIA

ARD DOMES'

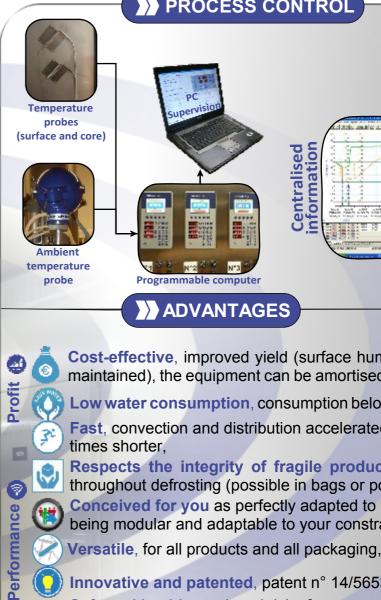
3

222

TECHNOLOGY AND PRODUCTS

Pay-back example

Every day a manufacturer defrosts 4 tonnes of chicken. In Frozen classic air defrosting, the defrosting yield is around 94%. A LUTETIA DGV 4 trolley defrosting chamber can process the daily production in two 2 000 kg cycles. The defrosting yield is around 98%.


Material gain: 85 kg per cycle over 400 cycles/year 34 000 kg/vear The equipment is paid for itself within 10 months

Weight

(kg)

Defrosted

DEFROSTING CHAMBER

Uniform, through optimised aeraulics,

Example of defrosting of fragile products

Precision

PROCESS CONTROL

- Cost-effective, improved yield (surface humidity of product maintained), the equipment can be amortised in under 1 year,
- Low water consumption, consumption below 10 % of processed weight,
- Fast, convection and distribution accelerated for defrosting times 2 to 4

Respects the integrity of fragile products, products remain static throughout defrosting (possible in bags or pouches),

- Conceived for you as perfectly adapted to your factory, the system being modular and adaptable to your constraints and your configuration,

Innovative and patented, patent n° 14/56533,

- Safe and healthy, reduced risk of cross-contamination, simplified quarantining of batches, short defrosting times incompatible with the emergence of bacteria from their latency phase, dual temperature control at the core and on the surface (tailored surface conditions),
- Regular, from one cycle to another, thanks to the management of de-frosting conditions and process control-command.

3 🗩